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1 Introduction

The study of chaotic dynamics in cardiac systems has gained significant importance due to its role in
predicting irregular heart conditions like arrhythmia and fibrillation. This research focuses on quantifying
chaos in cardiac simulations using Action Potential Duration (APD) data. By employing simplified cardiac
models (Section 2.2), and techniques like Wolf’s Algorithm (Section 2.5) and the Spatial-Temporal Algorithm
(Section 2.6), this study aims to calculate the chaotic and non-chaotic regions for different parameters
that can guide the cardiac medication to avoid deadly chaos. Moreover, I am trying to provide a more
computationally efficient APD-based approach to chaos quantification in the cardiac system. Besides the
simulations, in the future, with experimental data, this research might be used to improve the diagnosis of
cardiac disease by efficiently quantifying the heart’s complex behavior.

2 Literature Review

2.1 Action Potential Duration (APD) and Diastolic Interval (DI)

APD refers to the time from the start of depolarization to the end of repolarization, where people usually
define a specific value as the starting and ending points. For example, if membrane potential is scaled to be
[0, 1], then APD7p or APD at 30% depolarization is the time between u = 0.3, as shown in Fig. 1.

DI means the time between the end of one APD and the start of the next when the cell tries to recover
its excitability for the following depolarization, shown in Fig. 1 as well.

2.2 Three Variables Simplified Cardiac Model (3V SIM model)

3V SIM model or Fenton-Karma Model was developed in 1990s and it quantitatively reproduced APD vs DI
curve (restitution curve) which determines the APD and relevant propagation velocity after repolarization [1].
It aims to provide a simplified solution to simulate the electrical activity of the cardiac system. Moreover, it
balances the computational cost and physiological accuracy, making it quite useful in large-scale simulations
with studies of arrhythmic behaviors in the cardiac system.

Specifically, 3V SIM model has three trans-membrane currents: fast inward (I or Na*), slow inward (I
or Ca?t), and slow outward current (I, or K*). Now, even with the names Na®, Ca?t, and K, it does
not mean they represent those measured currents but only their activation and inactivation characteristics
[1]. What’s more, three state variables are defined as membrane voltage (u), and gate variables (v, w)
where the latter two control the inactivation and reactivation of currents (similar models but with four state
variables are defined in [2],[3]). During the whole activation-inactivation process as shown in Fig. 1, Ig is
responsible for the depolarization (upstroke part @) of membrane voltage, which is controlled by gate v,
I, is responsible for the repolarization of membrane voltage (part @) and [ is responsible for maintaining

the plateau (part @) after depolarization, which is controlled by gate w.



By tuning its parameters, there are four different parameter sets where this model could replicate restitu-
tion curves from original Beeler-Reuter (BR) model [4], modified forms of the Beeler-Reuter (MBR) model
[4], Luo-Rudy-I (MLR-I) model [5], and also optical mapping of the epicardium (outermost heart layer) in
the left ventricle of a pig [1]. Besides, it was also used in paper [6] to investigate the mechanisms for different
spiral wave breakups.

Finally, the equations are defined as below [6]:

dwu(z,t) = DV2u — (Ia(u, v) + Lso(u) + Ls(V, w)) /Crm (1)
Ov(z,t) = (1-p)(1 —v)/7, (u) — pv/7) (u) (2)
Opw(z,t) = (1 —p)(1 —w)/7, (u) — pw/7} (u) (3)
I (u,v) = —vp(u — uc)(1 — u)/7q (4)
Iso(u) = u(l = p)/70 +p/77 (5)
Li(u,w) = —w(1 + tanh(k(u — u)))/(27s) (6)
where:
p="H(u—u) (7)
q=H(u—uy) (8)

and H() is Heaviside step function
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Figure 1: Membrane potential by 3V SIM Model



2.3 Chaos Quantification

Various methods, such as the Lyapunov exponent [7], correlation dimension [8], and return maps, are utilized
to quantify chaotic behavior. In the actual simulation or experiment, several constraints may arise during
complexity calculation involving inadequate temporal data length, limited observation of state variables
(e.g., when only a single state variable could be observed), and the influence of the stochastic process
(noise). Particularly, usual Lyapunov exponent methods require long temporal data length to get stable and
reliable results [9]; partial state variables require reconstruction of the original phase space of the dynamical
system [10]; the stochastic process needs to be distinguished from chaos when both have similar Lyapunov
exponents [11],[12]. In the sections below, the calculation methods and solutions to the limitations mentioned
will be reviewed.

2.4 Lyapunov Exponent

Lyapunov exponent is a quantitative measure of the divergence rate for nearby trajectories, implying the
stability of a nonlinear system, spatially or temporally. Typically, following that basic definition, in a 1D
system, the Lyapunov exponent can be naively calculated as [7]:

) ) 1. dz(t)
M) = B T 5x(0)
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where 0z(0) is the initial separation of two trajectories.
Now, heading to the higher dimensional system, it becomes [13]:

1 X)X O 1
AX(0) = Jim —In X0 = Jim = 1In (R' T IR . (10)
where:
o = % is the direction vector.

o JH(X(0)) = II=LJ* (X (0)) is the Jacobian matrix.

o Ji; (X(0) = gggjgé)) is the element of the Jacobian matrix.

However, in actual calculation, we cannot have infinite time series, so the only one we can get is finite-time
Lyapunov exponent, and it is defined as [13]:

A(X(0),t) = %m (ATJH T TR . (11)

The approach is considered naive for several reasons. Firstly, the Lyapunov exponent is largely dependent
on the choice of initial vector X (0), which means if X (0) is unluckily located on some periodic orbit, we will
get some A close to zero. Moreover, even if X (0) happens to be a ‘generic’ state space point, it is still not
clear that the Lyapunov exponent could reflect anything in particular [13]. Finally, the observed temporal
length ¢ may also influence the accuracy and reliability of the computed Lyapunov exponent.

Therefore, two other more advanced methods, Wolf’s Algorithm [7] and Spatial-Temporal Algorithm [9],
are considered, which will be discussed later.

2.5 Wolf’s Algorithm

Wolf’s algorithm for calculating Lyapunov exponents is widely utilized to quantify the rate at which nearby
trajectories in a dynamical system diverge. Instead of relying solely on one trajectory with initial point
X (0) as shown in Eq. 11, the algorithm selects multiple trajectories in a temporal data set. This approach
mitigates the risk of selecting a non-representative trajectory, such as one located on a periodic orbit or
within atypical attractors, thereby ensuring a more robust and accurate estimation of the Lyapunov expo-
nent. However, the method does not incorporate spatial information if the points are correlated, such as
the Laplacian in Eq. 1. Consequently, this approach focuses primarily on the temporal Lyapunov exponent



without accounting for spatial dynamics.

STEP 1: Phase Space Reconstruction [10]

During the time when Wolf’s Algorithm was developed, people tried to solve the nonlinearity measurement
issue when only limited observation could be done during the experiment. That is to say, people need to
reconstruct the original phase space based on the scalar time series they have, i.e., scalar measurement of
only one state variable. This step is essential for analyzing the system’s underlying dynamics, which will be
reviewed thoroughly in Section 2.7.

Given a time series ~:

’}/:{[L'i},i:l,...,N, (12)

we could recontruct the phase space I as :

™" = {XZ”T = (xi(k),xi+T(k), e T (m—1)r (k)) },i =1,...,N—mr+rT. (13)

where

e | is the time step.

e m is the embedded dimension of the time series.

e 7 is the lagging of the time series.

e N is the total time steps of the time series.

Theoretically, if given high enough embedded dimension m and proper lagging 7 (will be discussed more
in Section 2.7), we could say I'™7 could be considered topologically equivalent or diffeomorphic to the true
phase space T' [10], i.e., having the same Lyapunov exponent, where the scalar measurement z, for instance,
can be the membrane potential u or the APD of u in 3V SIM model. To summarize, in the 3V SIM model
it can be shown as:

I‘m”TgI‘:{Xi:(Ui,vi7wi>};i:1,...,N. (14)

In the later steps, for simplicity, the reconstructed phase space I'"™" = {le ’T}, will be used as the

input data set.

STEP 2: Identify Nearby Trajectories

For a point in the phase space, find a nearby point (a neighbor) that lies on a different trajectory. This
neighbor should be close in space (both their magnitude and direction) but not necessarily in time to avoid
correlations between temporally adjacent trajectories.

Specifically, a point X; where i % in first iteration and ¢ = i’ otherwise, is chosen, then by iterating
through I', we find its nearest neighbor X; by calculating the Euclidean distance:

j = argmin | X" — X/"7|| = argmin L; <, (15)
J J
where
eje[l,N—mr+T7]
°jF#i.
XX
i J
° XX < 6.

e = 3 is the maximum initial angular distance.

e ¢ is the maximum initial separation.

If the algorithm cannot find a close enough pair whose Euclidean distance is smaller than e, it should
report to the user and change the e accordingly.



STEP 3: Evolve and Measure Divergence

Once we obtain a pair of neighbors, following Eq. 10, the finite-time Lyapunov exponent is then computed
by monitoring the exponential divergence of the trajectory difference over a certain time interval, indicating
a chaotic behavior.

Evolve L; by one time step each until:

HX?,T _ Xj”f”” =Ly > ¢, (16)
or

i'=N-mr+71orj=N-—mr+r, (17)

where e should be chosen sufficiently large to ensure the two neighbors exhibit chaotic behavior.
If the evolved distance exceeds €, repeat STEP 2 & 3. If not, break the loop and continue to STEP 4.

STEP 4: Measure the Lyapunov Exponent [14]

Having obtained multiple finite-time Lyapunov exponents throughout the iterations, the next step is to
compute an averaged value, yielding a more robust estimate of the system’s Lyapunov exponent.

During the loop, record all the LL/",’, the ¢ in first loop as ip and the i’ in last loop as iy. Finally, the
Lyapunov exponent is: '

1 L
A== ; Z log, -, (18)
tf— % All Loops L’L

2.6 Spatial-Temporal Algorithm [9]

Both spatial and temporal factors matter in nonlinear dynamical systems with spatial correlations, such
as those governed by Laplacian operators. Classical Lyapunov exponent algorithm, for example, Eq. 10 or
Wolf’s Algorithm, mainly focuses on temporal chaos. While spatial-temporal Lyapunov exponent (SLE) [9]
can quantify how local perturbations evolve and spread through space over time. Therefore, the key challenge
this algorithm tries to solve is to understand how chaos manifests when spatial interactions play a role in
the system’s dynamics, where the growth of perturbations at one point can influence nearby regions. This
provides a more comprehensive understanding of the system’s global dynamics by capturing both temporal
and spatial instability.

A two-dimensional square map with a resolution of 5122 pixels (based on the 3V SIM model) will be
applied, with a variable  (could be u or APD) at each pixel serving as the input time series for the purpose
of the algorithm’s demonstration.

Now, a 2D map A?(L) is defined as:

A*(L)={k=(a,f)[1<a,B<L}, (19)

where:

o [ =512 is the length of map.

e k is the pixel in map.

e o, (3 is the z,y coordinate of the pixel k.

STEP 1: Phase Space Reconstruction
Then for point k, we have the time series y below:

V(k) = {z1(k), 22(K), ..., on (F)} (20)

Similar to Eq. 13, we could reconstruct the phase space as



™7 (k) = {sz‘f(k:) = <xl(k:), Tigr(K)s ooy Tig(m—1)r (k)) },i =1,...,N—mr + . (21)
Therefore, if we consider all embedded vectors in the map, we could see:

™7 (A%) = | T (k). (22)
keA

STEP 2: Identify Nearby Trajectories
For each vector X" (k) € I™7(k),Vk € A%, we search its neighbor h € A% h # k such that the
following condition holds:

i+mT—T
X7 (k) = X (R = | Y (X7 (R) - X7 () <6 (23)

i'=i
where € is the maximum initial separation.
STEP 3: Evolve and Measure Divergence

At time step i, we name the certain neighboring pair by (k, h). Then we evolve the pair to one more step
further, which is to calculate

1X3r (k) = X3 (R (24)

STEP 4: Measure the Lyapunov Exponent
Finally, SLE is defined as:

N—-mTt m,T mT

1 IX 7 (k) — X7 (h)|

_ 1 it i+1 . 2

=g o X 2 Og(nxwm = X[ (R)] )
P i=1 (k,h) ' !

2.7 Phase Space Reconstruction

Phase space reconstruction is a fundamental technique in the analysis of nonlinear dynamical systems, es-
pecially for systems where direct observation of all state variables is not easy. The concept is based on
Takens’ Embedding Theorem [10], which provides the theoretical foundation for reconstructing a system’s
phase space from time series data. Two parameters need to be decided: embedded dimension m and lagging
7. The lagging 7 is typically selected first, followed by determining the embedding dimension m.

Lagging: 7

Embeddings with the same m but different 7 are equivalent in the mathematical sense for noise-free data
[15]. Therefore, for the purposes of this research, where simulations are conducted without the influence of
noise, a simple choice of 7 = 1 is sufficient. However, in the presence of noise, a smaller value of lagging will
result in reduced variance within m7, or we can say most embedded vectors clustering around the diagonal
in the R™ — a phenomenon referred to as redundancy in [16], then if noise variance is larger than the variance
of mr, the calculation would be nonsense.

For general cases, i.e., for experimental data contaminated by noise, common methods for determining
lagging would be the mutual information method [17] and autocorrelation function [18]. When selecting T,
it is undesirable to be too small, as explained before, and also not too large, which might cause embedded
vectors to occupy a broad region in the R™, leading to the deterministic structures [15] being confined to



very small scales.

Embbeded Dimension: m
The embedding dimension refers to the number of delayed elements for the time series v = {z;} used to

construct the embedded vector X;. To reconstruct phase space successfully, the sufficient condition would
be [10],[19]:

m > 2d,m > 2d.. (26)

where:

e d is the phase space dimension.

e d. is the box-counting dimension (similar to the correlation dimension) of strange attractors.

So, for example, in the 3V SIM model, according to Takan’s theorem, the embedded dimension can
guarantee a successful phase reconstruction if it is larger than 2*3 (3 state variables), which is 7. However,
there is another reference stating [20] that the embedded dimension can be:

m = d, (27)

where it successfully reconstructs the Lorenz system (d = 3) with m = 3 by plotting the reconstructed phase
space and original phase space and showing that they are geometrically same.

Therefore, we may conclude that m in [d, 2d] or [d, 2d.] could be appropriate, with its exact minimum value
depending on the nature of the dataset being analyzed. Several methods exist for determining an optimal
embedding dimension, including the False Nearest Neighbor (FNN) method [21], the Characteristic Decay
Rate [9], the Fuzzy Clustering [22], the Fill-Factor method [23], the Average Integral Local Deformation
(AILD) method [23], and so on. A comprehensive summary of these algorithms can be found in Jiang and
Adeli [22]. Most of the approaches above rely on the fact that with an embedded dimension larger than a
minimum value, the reconstructed phase space would be geometrically the same as the true phase space.
Furthermore, a reasonable data length required to determine the embedded dimension is at least 10™ [24].
Accordingly, the success of those algorithms requires the dynamical system to behave in a low dimension
with sufficient long data as input.

In the following part, I will provide a detailed review of the False Nearest Neighbor (FNN) method, which
is implemented to determine the embedding dimension in this research.

STEP 1: Phase Space Reconstruction
7 =1 is obtained before, and we need to initialize different embedded dimensions {m}.
For every embedded vector with a certain m:

Xl-m’T:1 = {4, Tiyr, Tivor, . Titm-1)r )i =1,2,...,N —m7 + 7. (28)

STEP 2: Identify Nearby Trajectories
Find its nearest neighbor X7 such that j = argmin[| X" — X7"|| = arg min R}".
J J

STEP 3: Evolve and Count False Neighbors
We get R]"H! = || X" — X+ Now 4, j will be identified as a pair of false neighbors if R} — Rj**!| >>

Specifically, if the ratio:

m)2 _ (pm+1)2
R(i,m) = \/ (R7") ( R;? ) (29)

is bigger than a pre-defined value Ry = 10, we call {i,j} a pair of false neighbors or point i has a false
neighbor j.

STEP 4: Find Correct Embedded Dimension



false pairs of neighbors
Plot the percentage ¢t pairs of neighbors for every m.

Now, if at a certain embedded dimension mg, the percentage of false nearest neighbors does not decrease,
we could identify mg as the correct dimension, where, for instance, my = 4 from Fig. 3.

2.8 Noise and Chaos Distinguishment

Both algorithms, especially Wolf’s algorithm, have been criticized because they assume and do not test for
the exponential divergence of the orbits [15],[25]. As a result, these algorithms cannot effectively distinguish
between chaos and noise. Therefore, including a robust method for distinguishing between noise and chaos is
necessary for this research. Now, the fundamental difference is that chaos arises from deterministic, nonlinear
processes. This means that chaotic systems are sensitive to initial conditions but follow predictable paths for
a short period of time. Nevertheless, noise (typically uncorrelated one) is random, leading to unpredictable
behavior that is not governed by deterministic equations.

Many methods exist for noise and chaos distinguishment, including the Simplex Projection method
[26], Return Map method, Correlation Dimension method[8], Permutation Entropy [27], Machine Learning
method, etc.

In this study, the Simplex Projection method is utilized and reviewed. Notice that this method focuses
on uncorrelated noise, while more details on autocorrelated noise can be found in [28]. Simplex projection
can be described as a nearest-neighbor forecasting algorithm [29]. It divides input time series into training
and prediction sets, where similar past embedding vectors in the training set could forecast those in the
prediction sets. Since chaos and noise have essential differences in their predictability, their performance
on prediction scores in the testing set differs. Chaos shows a decreasing prediction score curve over time,
reflecting the short-term predictability. In contrast, noise results in a flat prediction score curve due to its
lack of a deterministic structure.

STEP 1: Phase Space Reconstruction[28],[30]
To begin with, for a certain embedded dimension m and lagging 7 of the input data set v = {;}, we
have its embedded version I'"™7 = {X ™"} as defined in Eq. 13. Then the prediction set is defined as:

{Zivs} ={f( X" .8)},i=N/2,...,N, (30)
where s is the prediction step.

STEP 2: Identify Nearby Trajectories
Then we find 3 nearest neighbors with index {j, k,1} to embedded data at step i:

j=argmin||X;")  — X0 |5 € [1+mr, N — 3], (31)
J#i
k = argmin | X" — X" || k€ [1+m7r, N —s], (32)
kot j
l=argmin || X" — X" |,le[l+mr,N —s]. (33)
I#i,5,k

STEP 3: Predict
After that, we predict ;45 as:

L=ty TR, 5T
R V=A05R, i—mr X
Tiys = f(Xini’,;T,S) — Z i—mT - i/ —mT , (34)
i={ik0 TR =X |

7.,7‘"1,7'

where we weight the neighbors by their reciprocal of the Euclidean distance to X"

1—mT"



STEP 4: Plot Correlation Coefficient (Prediction Score)
To proceed, we plot {X; s} vs. {X;4s}, as shown in Fig. 5 and get the correlation coefficient (prediction
score) as:
Dot 0 oix 0,

(35)

Finally, by plotting the correlation coefficient p(s) vs. s, we could distinguish between chaos and noise,
as shown in Fig. 5.

3 Proposed Work

3.1 Motivation

Quantifying the chaos of the cardiac system is crucial to heart health, particularly in the early detection
of arrhythmia and potentially fatal fibrillation. This research now tries to quantify chaotic behavior within
the cardiac system using simulations without requiring full knowledge of all state variables. By focusing
on the APD from voltage data, it has the potential to be directly applied in clinical settings, where the
Electrocardiogram (ECG) can provide sufficient APD information. Also, with a good understanding of the
chaotic, transition, and periodic region for different parameters (here I show an example for 74 in Section 4.3),
it is essential for drug development because it helps pinpoint which particular regions of parameters are
sensitive and likely to induce chaotic behavior. Drugs targeting the heart should carefully modulate the
parameters to avoid the chaotic regions that may trigger deadly chaos.

Notably, the Spatial-Temporal Algorithm requires fewer data points (~ 200 APD) than traditional tem-
poral methods (~ 20000 APD), allowing for rapid measurement of chaos. Furthermore, the influence of
noise is also considered, with noise filtering algorithms applied in the future to enhance the robustness when
dealing with the experimental data.

3.2 Simulation

The simulation is browser-based (original model coded by Dr. Abouzar Kaboudian) and can be found here:
3V model [31]. Tt is implemented by WebGL using Abubu.js, which is a library that can utilize GPU using
easier syntax than the classical WebGL, allowing researchers unfamiliar with graphics programming to focus
on the numerical aspects. Abubu.js uses texture as the primary data structure, where each texture contains
512*512 pixels and every pixel has four channels: red (r), green (g), blue (b), alpha («, transparency). Here
in this 3V SIM model, only three channels (r, g, b) are used to store variables (u,v,w) and « is set to be 1.0.

When solving the PDEs in Eq. 1,2,3, finite difference and forward Euler methods are applied respec-
tively to solve Laplacian V? and to integrate over time. The unit time dt = 0.1 ms and unit space
dx = dy = 18/512 ¢cm. The boundary condition is using GL_.CLAMP_TO_EDGE in WebGL, which means
if the coordinates of pixels are [0, 1]?, then any coordinate greater than 1.0 is set to 1.0, and any coordinate
less than 0.0 is set to 0.0 [32].

The same initial condition I coded is applied to all different sets of parameters, as shown in Fig. 2. After
Fig. 2(A,B), persistent fibrillation will be generated, which means sustainable and stable spiral dynamics
will be generated for nonlinearity calculation.

Transient 73 = 20000 has been discarded, which is around 50 APD per pixel, and simulation time
AT = 50000 has been used for data acquisition (for Spatial-Temporal Algo, and AT = 320000 for Wolf’s
Algo, as shown in Tab. 1). As shown in Fig. 2(C), totally 252 data points are recorded and they are evenly
distributed in the map. The recording happens every 10 dt or every At = 2


https://chaos.gatech.edu/eaav6019/files/2D-3V-Model/index.html 

A

Figure 2: Initial condition: (A) Begin with voltage activation having a square shape from the left edge. (B)
When the most left part of the square passes the middle of the map, another activation square in the middle
bottom starts. (C) Red dots (25*25 dots in total) are the locations of data recorded.

Parameter Symbol Value
Simulation Time Step dr 0.1 ms
Measurement Time Step dt 4 ms
Space Step dzx, dy 5% cm
Texture Size \ 512 x 512 pixels
Measurement Pixels {k} 25 % 25 pixels
Transient Time T; 20000
Measurement Time AT [20000, 70000, [20000,340000]
# of Voltage per Pixel {u(k)} 12500, 1250000
# of APD per Pixel {APD(k)} ~ 200, ~ 20000

Table 1: Information of the input data. The red color is the input data for Spatial-Temporal Algo, and the
blue color is for Wolf’s Algo

3.3 Chaos Quantification of 3V SIM model

By adjusting 74 € [0.4,0.42] and more parameters in the future, I plan to identify chaotic and transition
regions (chaos to quasiperiodic behavior) within the 3V SIM model. In parallel, I will compare the results
derived from APD with those from the full state-space analysis to demonstrate that APD can effectively be
used for chaos quantification. Additionally, the Spatial-Temporal Algorithm with less APD needed will also
be evaluated. Moreover, certain meandering phenomena observed in the 3V SIM model and relevant experi-
mental data will be quantified. Future work will incorporate additional parameters from the model, allowing
for a more comprehensive understanding of its complex dynamics. Furthermore, more advanced simulation
models, such as the OVVR human model [33] and stochastic Beeler-Reuter model [4] and experiments, will
be included.

3.4 Proposed Timeline

I have been working on the chaos quantification of the cardiac simulations in 2024. I plan to finish this
research on finding chaotic and non-chaotic regions for different parameters in the 3V SIM Model with a
manuscript submitted before the end of the year 2024.

I will begin to work on the chaos quantification of more advanced models and experimental data from
the year 2025.
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4 Current Progress

4.1 Embedded Dimension

To embed the APD data, I used FNN to find the optimized Embedded Dimension.

As described in Section 2.7, I plotted the percentage of false neighbors percentage vs. embedded dimen-
sion, where the input data (shown in Tab. 1 with red color) is the APD sequence (120 APD) of a pixel
(index 25, randomly chosen with the results similar for all points) in the 5122 map and 7,7 = 350,74 =
[0.4,0.401,...,0.42].

point 25

100%
Tg=0.401

T4=0.402
T4=0.403
14=0.404
T4=0.405
T4=0.406
T4=0.407
T4=0.408
14=0.409
T4=0.410
T9=0.411
T4=0.412
19=0.413
19=0.414
T4=0.415
14=0.416
14=0.417
T4=0.418
T4=0.419
14=0.42

B80% A

60% -

40% -

percentage of false nearest neighbor

20% A

EERREREERE

0%

| e

embedded dimension (m)

Figure 3: The percentage of false nearest neighbours with input data @ = APD, with lag 7 = 1.

It could be seen that the false neighbors start to converge after m = 4. Therefore, we could decide the
embedded parameter for APD to be m=4,7=1

4.2 Stochastic testing

Since neither algorithm assesses the exponential divergence of the orbits, they cannot effectively distinguish
between chaos and noise. Also, in the experimental setting, measurement noise is a large part of the signal,
which cannot be disregarded. Therefore, stochastic testing on current simulation data is necessary to ensure
robustness when considering future experimental data. Because membrane potential u is the most important
variable in state space and the origin of APD, I do the stochastic testing solely on u. By selecting one pixel
in the input data and doing the stochastic testing, as shown in Fig. 4, the difference between chaos and noise
can be seen in Fig. 5, where the decrease in predictability would be a key factor of chaos. Some details of
correlation map is shown in Fig. 6.
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Voltage (V)

Partial voltage sequence

Partial voltage sequence for chaotic case and with 10% noise

Partial voltage sequence for chaotic case and with 20% noise
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Figure 4: For the following plots, only a partial curve is shown for better visualization. (A) Data input for
74 = 0.405, (B) Voltage from (A) but with 10% noise, (C) similar to the previous one but with 20% noise,
(D) noise generated by sin-wave plus 50% noise, (E) 100% uniform noise with range [0,1], (F) 100% gaussian
noise with mean and standard deviation same as data input.

Forcast Voltage Information
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Figure 5: Forcast Plot. p(s) is the correlation coefficient (prediction score) and s is the prediction step.
More details can be seen in Eq. 35.
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Figure 6: Predicted vs Observed Voltage. The correlation between predicted and observed Voltage is the
p(s) in Fig. 5. Top Left: A(s = 1), s = 1 (prediction step = 1) point for curve A in Fig. 5. Top Right:
A(s = 6). Bottom Left: F(s =1). Bottom Right: F(s = 6).

4.3 Chaos Quantification for 7

Here, I compare the results from the APD to the ones from full-state space using Wolf’s Algorithm. The
results indicate that the APD data preserves the nonlinear properties of the system. Using the Spatial-
Temporal Algorithm also shows that similar outcomes could be achieved with less APD. The Spatial-
Temporal Algorithm focuses on the one-step divergence, as shown in Eq. 24, which makes it hard to calculate
voltage data since voltage usually performs divergence in multiple steps (after 1 APD). This is the reason
for not including voltage data within the Spatial-Temporal Algorithm. In Fig. 7, the plot shows that the
result from APD performs well, and we can see a high variation in the transition region (state B) due to it
having a combination of both chaotic and quasiperiodic patterns.
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Figure 7: Top: Lyapunov Exponent (scaled) for 7; where A, B, C represents different tauy state. Bottom:
Actual simulations of different 74 states. The white line represents the tip trajectory of the spiral wave. By
and By represent two possibilities that the B state could become. State A stays chaotic, state B stays either
less chaotic or quasiperiodic, and state C stays only periodic.

4.4 Future Work: Chaos Quantification for Experiment and More

Future work will focus on applying the chaos quantification method to experimental data, as demonstrated
in Fig. 8, which I presented at STAM AN 2024. The ”temporal lya exp” was calculated by TISEAN, a widely
used nonlinear analysis software [15] and the spatial one was by Spatial-Temporal Algorithm. In addition,
Fig. 9 showed the Lyapunov Exponent for different meander cases in the 3V SIM Model. Simulations by
more advanced models will be tested in the future as well.
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t 4
209 ;
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Figure 8: Lyapunov Exponent for Optical Mapping (OM) [34] Experiment
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(c) ()

spatial lya exp for meander, m =4, € = 3, with double periods and one spiral
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Figure 9: (a) to (e): Different meander cases in 3V SIM Model. [(a): 74 = 0.41; (b): 74 = 0.392; (c):
74 = 0.381; (d): 74 = 0.36; (e): 74 = 0.25; (f): parameter set 2'].

5 Conclusion

The 3V SIM Model is a simplified cardiac model, retaining essential activation and inactivation characteristics
while having fewer variables. With simulations in this model, I showed that APD data could be an alternative
choice for determining the Lyapunov exponent by comparing it to results from full state space. The possible
application of this research in the future is to quantify the complexity of the cardiac system without knowing
exact voltage data in experimental and clinical settings. What’s more, integrating spatial information with
the Spatial-Temporal Algorithm could significantly reduce the amount of APD data needed, enabling quicker
and even real-time determination of the Lyapunov exponent.

IParameter set 2 was listed in the appendix of [1]. (a) to (e) used parameter set 1. For all other simulation data in this
research, they used parameter set 4 (but tuning 74 and 7). The applications of all parameter sets have been discussed in
Section 2.2
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