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Introduction

* |n most of the nonlinear system, detecting chaos is always one of the most
Important topics.

 Conventional method is to use Lyapunov exponent (LE) in time scale.

. tI?]asi_clgllly, run the simulation/experiment for quite a long time, and record
e

« However, some system Is not able to have data with that many time steps
(E.g., some ecology system can be affected by transitions between attractors
when running time'is long)

* So here, It introduces new method to get LE using spatiotemporal
Information [1]



Introduction — what I1s Lyapunov exponent

* Lyapunov exponent of a dynamical system Is to characterizes the rate
of separation of infinitesimally close trajectories. [2]

« Formula for LE [3] (Eq 2a In paper):
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* L = 0: periodic |
» 0Z(t)=06Z(0) (difference has no growth) This means chaos

* A <0: stable (convergent to fix point)



Introduction — what I1s Lyapunov exponent

* There iIs another formula for LE, which cannot apply here
» Another formula for LE (Eqg 1 in paper):
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* This one needs to know the exact motional expression (since we need
to get derivative) of dynamical system

 But for most of the cases, we have only a temporal series recorded,
usually without information about mechanism behind



Introduction — what I1s Lyapunov exponent

* S0, It applies Eq below for conventional method

.1 |6Z(t)]
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* Now, as we can see, It requires a long time series (usually O(1000)
data points) and so it cannot be applied to current data without a long
temporal scale.

 And this paper introduces a new one.



Method — a new spatiotemporal way

 Coupled map lattices (CML) is used to prove this method

 Every point in CML is just like logistic map, but also affected by its
neighboring (Laplacian):
X,1(K)=pux,(k)(1 —x,(k))+DVx,(r).

* Now, In this 2D lattice map, it runs twice, first time recording one
point with long time (200 steps)

 Second time recording all points in lattice, with a short time



Method — a new spatiotemporal way

* First time one point with long time; Second time all points with a short
time
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Method — a new spatiotemporal way

* Now we see that they are very similar.

 The lack of temporal information iIs compensated by the spatial
Information
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Method — a new spatiotemporal way

* The lack of temporal information is compensated by the spatial information
* Then we can also apply it onto LE

* A new spatiotemporal LE is defined:

- 1 XL (k)= X (h) | o .
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* S means spatial
» k =every point of 2D map from t_i to t_(i+d)
* h = neighboring points of k from t_i to t_(i+d) (neighbor distance < a small value)
» d =embedded dimension
* N_p =number of <k, h> pairs (take average)
» j=type of X variable
* i=time step



Method — a new spatiotemporal way

A new spatiotemporal LE is defined

« Compared to t
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*t =10, m-d]
e Points = all

e old one:
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require less time
but more spatial info
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d from new method

INE

Results — LE obta

* 1. Logistic CML
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Results — LE obtained from new method

 The two exponents show the same domains of stable, periodic and
chaotic attractors

* For further evidence of the validity, host—parasitoid CML is applied.
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Results — LE obtained from new method

» 2. Host—parasitoid CML.

* A: periodic, A= 0
* B: chaotic, A >0
e C: stable, A<0

* D: chaotic, A >0

Xpi(K)=px, (kK)(1—

x exp(— py.(k))+ D, Vx,(r)

X, (k))

J'Jr+l{k] =x,(k)(1 —exp( _ﬁ}'u{k])
+ DyVy,(r).

iy Ay
i """’/mli»\"'\\,

</
5
’/
~,,o
J
N
LN
' 3 —
— ee—
\~ \‘
‘~ Ay,
\\

Spatial Lyapunov Exponent
‘,b°0.0 01 02 03 04 05

Q

0.50

1.00
0.80
0.60
0.40
020y, , -
0%
158 5
100 Jgite ©
i -
i '-ﬁ-.?-a.' -"
.I."'!':{:.':'::.{l
OF S
B
- 5, " :‘ﬁu.
P
kTR 040

B YL L R T



Results — LE obtained from new method

* ) get from spatiotemporal method (Spiral waves showed by the host—
parasitoid CML) 09— (0 (1 . ()
. A =10.013 (quasiperiodic) =0.125 (chaotic) x exp( — By (k) + D, Vx,(r)

B 3 gt _}n+l{k] =_x”{k]{l —CKP{ _,B}JJ{kD
+ D, V:_l'u (r).
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Further discussion on dimensionality
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* M(d) shows a plateau after a certain d=d0

* Where dO 1s an estimation of system’s
dimensionality

* For single map (logistic map without coupled), its
dimension = 1, so A keeps almost constant when-c
Increases (d =d0 =1)

 For noise, dO = inf, so no plateau

 For others, d0 = 3, so logistic CML has dimension
around 3

ov exponent
(=] o
w ~J
o [4,]

Xoy I{k] = |”-Tr| (k}(l - -\:ar{k]} + DF:-YJ.' [r}-.

1 2 3 4 5 b 7 8 9_ 10
Embedding dimension

F’:J:n'l (r}=_\'”[f— 111” +T-'f“+ ]"f} For LOgiStiC CML
+_T”[E.._f— ]]—{—"L,.;“..f"‘ 1}_411.1“1”

with D the diffusion rate and



Conclusion

* |t detects the presence of chaos in very short temporal series with
Information in different spatial points.

* It used CML models to prove the validity of the method

* Furthermore, dimension information can be inferred from this method,
and can be used for validity check
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