Complex Heart Arrhythmias and other Oscillating Systems

Quantifying the Complexity of
Cardiac System Simulation by
analyzing APD sequence

Xiaodong (Will) AN



Contents

* Introduction

* Method (Literature Review)

 Current Result and Future Work .
Wave propagatine
(simulatiop

e Conclusion




Introduction

* This research tries to do these things:

Membrane Potential (u)

* 1. Quantify the complexity of cardiac system
simulations with parameter changing S A

Time (t)
« 2. Quantify simulations with meandering cases.
* 3. Quantify experimental results that have noise.

* With determination of the chaotic and non-chaotic
regions for different parameters, it can guide the
cardiac medication to avoid deadly chaos and help us -

understand the cardiac model more. | ARG | -
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Introduction — Chaos Quantification

J ¥

They have different complexities, but how do we quantify them?



Introduction — Chaos Quantification

* There are several approaches for chaos quantification, including
leading Lyapunov exponent (Characteristic exponent), Correlation
dimension, and return map.

* Lyapunov exponent: Quantification of the exponential growth rate in
phase space.

* Correlation dimension: The dimension of the strange attractors in
phase space.

 Return map: Visualization of complexity.



Introduction — Lyapunov Exponent (LE)

2.4 Lyapunov Exponent

Lyapunov exponent is a quantitative measure ol the divergence rate lor nearby trajectories, implying the
stability ol a nonlinear system, spatially or temporally. Typically, lollowing that basic definition, in a 1D
system, the Lyapunov exponent can be naively calculated as [7):

1. dx(l)

MrO0) = B 0 7 Sato)

(9)

where dx(0) is the initial separation of two trajectories.
Now, heading to the higher dimensional system, it becomes [13]:

1 THX(0))d X (0 1
AMX(0) = fl_lill —In I ||ﬁX}(JU)|| Ol = tl_iin o In [:ﬂ,] JH JHi) (10)
where: _ _
® = 2; {3; 1s the direction vector.
e JI(X(0)) = A (X (0)) is the Jacobian matrix.

. f:J (X{l]]) = :;; gﬂj; is the element ol the Jacobian matrix.

However, in actual calculation, we cannot have infinite time series, so the only one we can get is finite-time
Lyapunov exponent, and it is defined as [13]:

}L(X{l]),r‘,)—%lu( JEI ) (11)

x(1) +48(1)

T
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Introduction

Guide us to avoid deadly chaos and
understand the cardiac model more.

Simulation: 3V SIM Model

> Quantify Methods (LE)




Method

e 3V SIM Model

* Lyapunov Exponent:
 Phase Space Reconstruction
* Wolf’s Algorithm
« Spatial-Temporal Algorithm
* Noise and Chaos Distinguishment



Method — 3V SIM Model

3V SIM model or Fenton-Karma Model was developed in 1990s and it

guantitatively reproduced APD vs DI curve (restitution curve) which
determines the APD and relevant propagation velocity after

repolarization.

 Three variables: u,v,w
* Three currents: |_fi (Na+), |_si (Ca2+), | so (K+)

Membrane Potential (u)
1
o
egp
1
1

Time (t)
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Figure 1: Membrane potential by 3V SIM Model




Method — 3V SIM Model

Finally, the equations are defined as below [6]:

Oru(z,t) = DV*u — (Ig(u,v) + Io(u) + Li(V,w)) /Cm (1)
Scaled erme Potentialjat the Probe
Buv( 1) = (1~ p)(1 — v)/75 (u) — po/r N 2)
Buw(a, 1) = (1 - p)(1 - )/ ) — pw/ri ® 3
Is(u,v) = —vp(u —uc)(l —u) /14 (4) S
-
lso(u) = u(1 = p)/70 + p/7: ONE- Foe
=
Li(u,w) = —w(1 + tanh(k(u — u®")))/(27) (6)
W h.ere : 200ms 400ms @I’ijs §00ms
Time (1)
p=H(u—uc) (7)
Figure 1: Membrane potential by 3V SIM Model
q=H(u—u,) (8)

and H() is Heaviside step function

7, (U)=O(u—u,) 7, +O(u,—u)r,,. 10




Method — 3V SIM Model

 Qualitatively, | (Na+) = v /tau_d.
Ig(u,v) = —vp(u — u:)(1 —u)/7q (4)

« S0, we can regard tau_d as the resistance of the sodium current

* In later section, I discussed the different complexity by changing tau d
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Method — LE (full phase space)

* We can input the full phase space (all variables) into Algo, and get LE.

re

v
:

Complexity (LE)

=

0.01




Method — LE (APD)

 We can also input the APD into Algo, and get LE.

* With less data needed, but nonlinear property retained. Complexity (LE)
C (& ...
APD |
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Method — Taken’s Theorem

 Limited observations of state variables can retain the Lyapunov
exponent by proper lag-embedding.

(GGiven a time series ~:

where

e i is the time step.

e m is the embedded dimension of the time series.
e 7 is the lagging of the time series.

e N is the total time steps of the time series.

m= 2 ¥ embedaded dimension
tau = 2 # Jageing
time_series = [x0, x1, x2, x3, x4, x5, x6] u

time series_embedded = [[x0, x2], [x1, x3], [x2, x4], [x3, x5], [x4, x6]]



Method — Taken’s Theorem

> N

X - _oy+ox
%tl’ = ~XZ+pX-Y = x(f) = (X(0), X(t-1), X(t-20))
2 - xy-pz X2
X(0) N\N\/\/
X(t-7)
¢ = flow
X(#-1)
/ = m(f) = (XU, Y(F), Z(F)) X(t.zr)\/\/\/\/\/\/ /
> X r X(7)

https://www.youtube.com/watch?v=6i157udsPKms&t=40s
Sugihara, George, et al. "Detecting causality in complex
ecosystems." science 338.6106 (2012): 496-500.
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https://www.youtube.com/watch?v=6i57udsPKms&t=40s

Method — Taken’s Theorem (lagging 1)

* To get the proper embedding, we decide lagging t first and then
dimension m.

« Embeddings with the same m but different t are equivalent in the
mathematical sense for noise-free data [15]. Therefore, for the
purposes of this research, where simulations are conducted without the
influence of noise, a sitmple choice of T =1 is sufficient.

16



Method — FNN

* For embedded dimension m, there are methods mcludlng False

20 —

Nearest Neighbor (FNN) method [21]. |

1.0 l ‘,«""‘. ) .’f- .,.t:.-""*':)
114 . 99 . . = ' e ‘/\’ “ *'\‘\
Unwanted “crossing” in 2d projection, Y - R
- - b ;‘: . \\.\
or a pair of false neighbors g AN
10 | : N
X
Z gd%' = =gY+dX
20 |
A %’ = =XZ+pX-Y 0
dz _ - .
a = X¥-pz ~ I
A9
- . — .
Autonomous system o0 20
(UnlqueneSS) FIG. 1. The R! and R? embeddings of the x coordinate of
¢ = flow the Hénon map of the plane. It is known that for this map
d;=2. The points A and B are false neighbors while the points
A and C are true neighbors.
= m(n) = (X(0), Y1), Z(1)
Kennel, Matthew B., Reggie Brown, and Henry DI Abarbanel. "Determining embedding dimension
> X for phase-space reconstruction using a geometrical construction." Physical review A 45.61(1992):

34083.



Method — FNN

The optimal dimension is found when percentage of
FNN is dropped to a very low value

Unwanted “crossing” in 2d projection,
or a pair of false neighbors
Z -iiﬁy = =gY+dX
'T\ a = —xz+px-v
Z - xy-pz
Autonomous system
¢=flow  (Uniqueness)
* = m(f) = (X(), Y1), Z(1r))
> X
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Kennel, Matthew B., Reggie Brown, and Henry DI Abarbanel. "Determining embedding dimensin

for phase-space reconstruction using a geometrical construction.” Physical review A 45.6 (1992):
291N
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Method — FNN

« = x(f) = (X(?), X(t-1), X(t-21))

100.0 EL
X(#-27) 90.0 -
A -

80.0 3
X0 \ /.\//\/\/\/\\\ // :

70.0 3
60.0 3
50.0 3
40.0 -

X(t-1)

30.0 4

False NN Percentage

20.0 4

X(t-27) \/\/\/‘\/\/\/ X(*I- r) 10.0 -
007 2 3 4 5 6 7 8 9 10

X(f) —> Dimension
t FNN for Lorentz Attractors
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Finally, the equations are defined as beloﬂV

Oru(x, 1) (Ia(u,v) + Lo(u) + I (V,w)) /Ch

duvl@. 1) = (1 - p)(1 —v)/7; (w) — po/r} Y
Dl 1) = (1 - p)(1 - w)/ry I~ pu/m5 N
I (u,v) = —vpu — ue) (1~ w)/7
Iso(u) = u(l —p)/70 + p/7+

Li(u,w) = —w(1 + tanh(k(u — u®")))/(27)

where:

p=H(u—u.)

q= H(“ - uv}

and H() is Heaviside step function

7, (U)=O(u—u,) 7, +O(u,—u)r,,.

Uniqueness except for this

20



Method — FNN

« Even with the Laplacian term, there is only 0.01% crossing in true
phase space. So, FNN can work for 3V SIM Model with error of O(1e-
4)

data_length = 10000

crossing happen times = 0

for 1 in range(data length):

for j in rangeli+l, data lensth):

diz = 0
diz += (V[OI[0] (1] — WO] [0 [5]) wex2
diz += (V[11[01[i] — W11 [0][5]) wex2
dis += (w[2] [0][1] — w[2][0] [5]) #=2

if dis € le-10:
diz_plus_1 = (¥[0][0] [i+1] — w[0][0] [5+11) *=2 + (w[1][0]1[i+1] — w[1]1[0] [5#1]) *=*2 + (w[2][0] [i+1] — w[2][0] [j+1]) *=z2
if dis_plus_1 > 1le-10:
printidis, di= plus 1,1, 7}
crossing _happen times += 1

printl data length 1=: ', data length)
printl’ crossing happen timez: ', crossing happen times)

5, 1595540045984093.—11 5.823367832391068—006 1096 T434
data length 1s: 10000

crossing happen times: 1 21



Method — Wolf’s Algo

/G\Q"(m
end of

data set

Step 1. data prepare (original phase space or phase space reconstruction)

entify Nearby Trajectories
m the phase space, find a nearby point (a neighbor) that lies on a different trajectory. This
nmghbﬁr should be close in space (both their magnitude and direction) but not necessarily in time to avoid
correlations between temporally adjacent trajectories.

Specifically, a point X; where i == % in first iteration and i = i’ otherwise, is chosen, then by iterating

through I', we find its nearest neighbor X; by calculating the Euclidean distance:

https://home.cs.colorado.edul~l|]zb/chaoslwolf—n0tes.pdf

Jj =argmin || X{™7 — X™7|| = argmin L; < ¢, (15)
I i
where
ejc[lLLN—mr+7].
NS
xl.u rxru T

* e < 9

efl=73is 'the maximum initial angular distance.

®E S thn:- maximum initial separation.

If the algorithm cannot find a close enough pair whose Euclidean distance is smaller than e, it should
report to the user and change the € accordingly. 22



Method — Wolf’s Algo

L
https://home.cs.coIorado.edu/~|ilzb/chaos/wolf—notes.pdf

/G\Q"“n)
end of

data set

STEFP 3: Evolve and Measure Divergence
Quece we obiatf a pair of neighbors, following Eq. 10, the finite-time Lyapunov exponent is then computed

by monitoring the exponential divergence of the trajectory difference over a certain time interval, indicating
a chaotic behavior.

Evolve L; by one time step each until:
| X5 = XG0T = Lie > e, (16)
or

! =N-mr+71torj’=N-—mr+r, (17)
where € should be chosen sufficiently large to ensure the two neighbors exhibit chaotic behavior.
If the evolved distance exceeds e, repeat STEP 2 & 3. If not, break the loop and continue to STEP 4.

STEP 4: Measure the Lyapunov Exponent [14]
Having obtained multiple finite-time Lyapunov exponents thronghout the iterations, the next step is to
compute an averaged value, yielding a more robust estimate of the svstem’s Lyapunov exponent.

During the loop, record all the %h the i in first loop as ig and the i’ in last loop as iy. Finally, the
Lyapunov exponent is:

1 L]"'
A= - - E logs —. 23 (18)
tf o All Loops ; L‘.



Method — Wolf’s Algo

Evolve L; by one time step each until:

average

L
https://home.cs. do.edu/~|ilzb/chaos/wolf—notes.pdf

| X5 = XG0T = Lie > e, (16)

or

! =N-mr+71torj’=N-—mr+r, (17)

where € should be chosen sufficiently large to ensure the two neighbors exhibit chaotic behavior.
ed distance exceeds e, repeat STEP 2 & 3. If not, break the loop and continue to STEP 4.

STEP 4: Megsure the Lyapunov Exponent [14]
Having obtaifed multiple finite-time Lyapunov exponents throughout the iterations, the next step is to
compute an averaged value, yielding a more robust estimate of the svstem’s Lyapunov exponent.

During the loop, record all the %h the i in first loop as ig and the i’ in last loop as iy. Finally, the
Lyapunov exponent is:

1 L]"'
A= - - E logs —. 24 (18)
tf o All Loops L‘.




Method — Spatial Temporal LE (SLE)

Step 1: data prepare (original phase space or phase space reconstruction)

STEP 2: Identify Nearby Trajectories
For each vector X,"" (k) € ™7 (k),¥k € A®, we search its neighbor h € A*,h # k such that th
following condition holds:

|r'+m*r—.1' .
||X:”T|:k} _ X:al‘l'[h'-l — q Z ['erie"[k‘-l _ X:?'rl::h}jl_) < E. (EA

if=i

where ¢ is the maximum initial separation.

25



Method — Spatial Temporal LE (SLE)

After duration 1
—_— — —

STEP 3: Evolve and Measure Divergence
At time step i, we name the certain neighboring pair by (k, h). Then we evolve the pair to one more step
further, which is to calculate

| X7 (k) — X727 ()]l (24)

26




Method — Spatial Temporal LE (SLE)

After duration 1
—_— — —

STEFP 4: Measure the Lyapunov Exponent
Finally, SLE is defined as:

N—mT J:i‘.ll.'l T F i
}" L - : I 1 o I I+ o . ﬂE. 1'|
[J‘i'i' T } — 1\: ZI U,_—,, ( ” J::“.'I [krl X;‘JI.'I [F :l” ( Ly

27
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Method — Noise Chaos distinguishment

 Simplex Projection

Embed dim=4,tau=1

Time

9 o © . o o
o © | 4 m o k J o
© (o} o
o)
o O 1l e O T
, 0 f o (o) on cPO
O\ 0 2 o/v 2
o [o)
o}
[} / 1o /oo !
(o}
o
0
o © lo o e
0 o o o ©
" Bk
o
(o} ° o o ° o
I I 1 | |
20 40 60 80 100

Step 1: data prepare (original phase space or phase space reconstruction)

STEP 2: Identify Nearby Trajectories
Then we find 3 nearest neighbors with index {j, k,1} to embedded data at step i:

. . o T T . x

1= 31-5{1.1111 ||X:Em_r - I_;”_I,“f |.J' = [1 +mr, N — :._.]
J#i

k= ﬂl"ly,;l.lliu xmr  — X0 | ke[l +mr, N — 3],
i,

I = a!l-%.miu X — _X'E’:T” |, 1 € [1+mr, N —s].
#i, g,k

m=~

28



Method — Noise Chaos distinguishment

 Simplex Projection

Value
02 03 04 05 06 0.7 08 09

o o 0O o © STEP 3: Predict
o © o 0 After that, we predict &;, , as:
o o
o |o > T,
T o ﬁ v={5k1) TR, = X0 .
I 5 o o Ofl o o O Firs = f[\Xf_:”..'s] = i (34)
nlle | 0 o o o gk =]
& e & . o anr
(o} 0o o] o o o
ki o where we weight the neighbors by their reciprocal of the Euclidean distance to X" .
9 ofy u °lo
o} o 0 o o
o STEP 4: Plot Correlation Coefficient (Prediction Score)
0 o Oo o o To proceed, we plot {X;; .} vs. {X,;:}, as shown in Fig. 5 and get the correlation coefficient (prediction
o - © score) s
(o) e o :
(o) L&) © - - i v
o * Cov [{Xigo}, {Xige}] e
o o} pls) = pry. ¢ 1= (35)
(o} {X!+H}-{X\=+-'} el (T o
o o o {Xa Y%
O o ? o Finally, by plotting the correlation coeflicient p(s) vs. s, we could distinguish between chaos and noise,
T T T T 1 as shown in Fig. 5.
0 20 40 60 80 100
Time

29



Method — Noise Chaos distinguishment

« Unautocorrelated noise would not be predicted by similar patterns since its next
data point is not correlated with current pattern.

« We can expect the chaos has decreasing prediction score with increasing
prediction steps. But noise just keep a flat line.

Forcast Voltage Information

0.7 4
0.6 4
.-______ .»—-'*-_"—*—""'-h'-.._
-/ .
0.5 4 -— > "ﬁ»-—..__*
—&— (A) 0% noise
0.4 (B) 10% noise

pls)

, --d- (C) 20% noise
0.3 4 \ —»- (D) sin + 50% noise
-® (E) 100% pure noise
0.2 4 '-.‘ % - (F) 100% gauss noise
0.1 1 '

ol mo B o : o
Ry .
-
_D_l_.
1 3 5 7 9

. - . . . e . 30,. ..
Figure 5: Forcast Plot. p(s) is the correlation coefficient (prediction score) and s is the prediction step.
More detaile can be ceen 11 Fag 25



Method - Simulation

 We take advantage of fast GPU simulations
using webGL.

* https://abubujs.org/ (Dr. Abouzar Kaboudian)

e |t can run real-time simulation on PC, tablet
and even cell phone.

Parameter Symbol Value
Simulation Time Step dr (.1 ms
Measurement Time Step dt 4 ms
Space Step dr, dy % cIm
Texture Size \ 512 % 512 pixels
Measurement Pixels {k} 25 = 25 pixels
Transient Time T, 20000
Measurement Time AT (20000, 70000/, [20000,340000]
# of Voltage per Pixel {u(k)} 12500, 1250000
# of APD per Pixel {APD(k)} ~ 200, ~ 20000

Table 1: Information of the input data. The red color is the input data for Spatial-Temporal Algo, and the

blue color is for Wolf's Algo

Wave propagatipeg
(simulatiop

31


https://abubujs.org/

Current Result and Future Work — FNN

* Now, by plotting the FNN percentage with respect to m, we get optimal m when it no longer
decreases point 25

100%

Ta=0.401
To=0.402
If(u,v) = —vp(u —uc)(l —u)/7a (4) T4=0.403
Ty =0.404
Ta=0.405
Ta=0.406
Ty =0.407

Tal i T4 =0.408
Minimum crossings happen oo
T4 =0.410
Ta=0.411
Ta=0.412
Ta=0.413
Ta=0.414
Ta=0.415
Ta=0.416
Ta=0.417
Ta=0.418
Ta=0.419
Ta=0.42

80%

60% -

40% 4

percentage of false nearest neighbor

20%% 4

EEEEERERER

0%

embedded dimension (m)

. : e : 32
Figure 3: The percentage of false nearest neighbours with input data x = APD, with lag 7 = 1.



Current Result and Future Work

A B C
68 T T s | e
* For tau_d, which is the g | =3
resistance of Na+, | quantified g =
the chaos, which qualitatively . e
match with the simulation map. 0.405 0410 0415

tau_d

 Demo:

https://chaos.gatech.edu/eaav6019/files/2D-3V-
Model/index.html

Figure 7: Top: Lyapunov Exponent (scaled) for 74 where A, B, C represents different tau, state. Bottom:
Actual simulations of different 7; states. The white line represents the tip trajectory of the spiral wave. B,
and B, represent two possibilities that the B state could become. State A stays chaotic, state B stays either
less chaotic or quasiperiodic, and state C stays only periodic.
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https://chaos.gatech.edu/eaav6019/files/2D-3V-Model/index.html
https://chaos.gatech.edu/eaav6019/files/2D-3V-Model/index.html

 Quantification of more complex
models/patterns

* For example, here is the LE for
different tip meandering cases.

* Notice here “temporal” used

TISEAN (Nonlinear Time Series
Analysis)

/

spatial lya exp for meander, m =4, € = 3, with double periods and one spiral

0.0 S ————=

b c d e
different meander cases

Figure 9: (a) to (e): Different meander
74 = 0.381; (d): 74 = 0.36; (e): 74 = 0.25; (I): para

"

cases in 3V SIM Model.
uneter set 2').

[(a):

—=— spatial
temporal

| ,
f

T4 = 0.41; (b): 74 = 0.392; (c¢):
34



Current Result and Future Work

 Quantification of experimental results.

* For example, here is the LE for pig hearts.

membrane potential « phases

spatial vs temporal
o +

09
o
diu
i 03»
wﬂ\

i om experiment
— 35




Conclusion

* The 3V SIM Model is a simplified cardiac model, retaining essential activation
and inactivation characteristics while having fewer variables.

* | showed that APD data could be alternative choice for determining the Lyapunov
exponent.

« What’s more, integrating spatial information with the Spatial-Temporal Algorithm
could S|gin|_f|cantl%/ reduce the amount of APD data needed, enabling quicker and
even real-time determination of the Lyapunov exponent.

« It can help drug development by showing which particular region of parameters
are sensitive and likely to induce chaotic behavior.

36



Thanks to CHAQOS Lab!

» Current Members:
» Casey
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 Flavio (Adviser)
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Any Question?
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