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I. DPLM DEFINITION AND SIMULATIONS

In the simulations we have performed, the DPLM is
defined on a 2-dimensional square lattice of linear size
L = 100. The sites are occupied by N distinguishable
particles, each of them associated to a unique label rang-
ing from 1 to N . Then, si = 1, . . . , N denotes the label
of the particle at site i. The key feature of the model
is that each particle is coupled to its nearest neighbors
by means of site- and particle-dependent random interac-
tions: a four-indices interaction energy Vijsisj is associ-
ated to the particles si and sj sitting at sites i and j. In
order to simulate the hopping dynamics of the particles
we allow for the presence of empty sites or voids. Consid-
ering a void density φv = Nv/L

2 = 0.005, in a system of
linear size L = 100 there are Nv = 50 voids with default
label si = 0, hence L2 = N +Nv.

The interactions are symmetric under concurrent ex-
change of spatial and particle indices, i.e. Vijkl = Vjilk.
The entire set of possible interactions {Vijkl} is drawn
according to an a priori probability distribution g(V )
and it is quenched. For each equilibrium particle config-
uration, there is a set {Vijsisj} of interactions which are
referred to as realized and it has been shown that they
are distributed according to peq [1]

peq(V, T ) =
1

N (T )
g(V ) e−V/kBT , (1)

where N (T ) is a temperature-dependent normalization.
The kinetic Monte Carlo simulations implement an

activated-hopping dynamics for which each particle can
hop to the position of a neighboring void with a rate

w = w0 exp

[
− 1

kBT

(
E0 +

∆E

2

)]
, (2)

where ∆E is the energy change of the system induced
by the hop. We set w0 = 106 and E0 = 1.5 so that
E0 + ∆E/2 ≥ 0.
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The data reported in Fig. 1 of the main text are ob-
tained from 217 ' 1.3×105 independent runs with differ-
ent random number seeds and the jackknife resampling
method is used for computing averages and errors of τeff.

Finally, we notice that τ−1
eff in Fig. 1(b) of the main text

does not exhibit a gentle rise at intermediate values of
δE for the up-jumps as observed in experiments [2]. This
may happen because we have adopted, for simplicity, a
constant void density φv in our simulations, which should
instead increase upon heating. Such an increase of φv
would yield a faster dynamics

II. THERMAL PROPERTIES OF THE DPLM

In the main text, we discuss about the final equilibrium
value of the system energy E∞ and the specific heat as a
function of the temperature. Let us now derive in detail
these two quantities. In order to obtain the equilibrium
energy E∞ as a function of the temperature T one has
to compute the average of the system energy [see Eq.(1)
in the main text]

E∞(T ) =
∑
〈ij〉′
〈Vijsisj 〉T = Nb

∫ V1

V0

dV V peq(V, T ), (3)

where [V0, V1] is the range of variation of the couplings,
Nb is the average number of bonds and peq is the equi-
librium distribution of the interaction energies given in
Eq. (1). A good estimate of Nb, at a low void density, can
be obtained in the approximation of isolated voids, i.e.
a void does not have another void as a nearest neighbor,
yielding in two dimensions Nb = 2L2−4Nv ' 2N(1−φv),
where 2L2 is the number of interactions for the fully occu-
pied lattice while each isolated void decreases this num-
ber by the 4 missing couplings with its nearest neigh-
boring particles. Hence, the problem reduces to com-
puting the average interaction energy as a function of
the temperature, i.e. 〈V 〉T . In this paper we choose
g(V ) as a uniform distribution, i.e. g(V ) = 1/∆V where
∆V = V1−V0 is the range of variation of the interactions.
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The general expression reads

E∞(T ) = 2N(1− φv)

[
V0 + kBT −∆V

e−∆V/kBT

1− e−∆V/kBT

]
,

(4)
which, choosing the boundary values as V1 = −V0 = 1/2,
reduces to

E∞(T ) = 2N(1− φv)

[
kBT −

1

2
coth

(
1

2kBT

)]
. (5)

It is easy to check that, in this case, E∞(T ) ≤ 0 where
the equality holds in the limit T → ∞. By taking the
derivative with respect to the temperature, we write the
heat capacity in the general case as

CV (T ) = 2kBN(1−φv)

{
1−

(
∆V

2kBT

)2

sinh−2

(
∆V

2kBT

)}
.

(6)
One can verify that dCV (T )/dT < 0, hence CV is a de-
creasing function of T as highlighted in the main text.

III. DYNAMIC STABILITY

The structural temperature heterogeneity, appearing
during the up-jump, can be understood in terms of a
stability argument of propagating fronts. First, the heat-
ing up of a glass is an auto-catalytic process, since the
excitation of particle arrangements to higher-energy con-
figurations speeds up the particle dynamics and hence
provides a positive feedback to the further warming of
the system. In d dimensions, TS(~x, t) can be seen as
a succession of equal-time d-dimensional surfaces in a
(d + 1)-dimensional space, representing a front propa-
gating upwards from Ti to Tf . The propagation is driven
by the energy influx from the bath and is stochastic be-
cause of the intrinsic noise of the particles dynamics. The
evolution of the surfaces is unstable against small pertur-
bations, meaning that a locally out-stretched (warmer)
region will further advance much faster towards the final
value Tf as the auto-catalytic nature of the dynamics
amplifies the perturbations. For very low Ti, implying
an extreme sensitivity of the dynamics on temperature,
TS can comparatively quickly reach Tf in localized do-
mains, while being practically stuck at the initial value
Ti elsewhere. This explains the nucleation of Tf domains
in a background of Ti regions. The fast dynamics in Tf
domains enhances the heating-up of neighboring regions,
inducing domain-wall motions. Due to the very stable
configurations of the Ti regions, the domain invasion can
be a slow process compared with the relaxation dynamics
in the Tf domains. Therefore, the particle displacement
d(~x, t) can become very large in the mobile Tf domains
even close to their domain boundaries as observable in
Fig. 2 of the main text. By contrast, cooling for the
down-jump protocol is instead an auto-retarding process
so that the downward propagating front TS(~x, t) is sta-
ble against perturbations. The dynamics is thus overall

homogeneous with relatively uniform TS(~x, t) as shown
in Fig. 2 of the main text.

IV. OBSERVABLES AND DOMAINS
DETECTION

We define a local particle displacement d(~x, t) = |~x−~x0|
as the distance of a particle located at ~x at time t relative
to its position ~x0 at time 0 when the temperature jump
is imposed. If ~x is vacant at time t, we put d(~x, t) =
0 for simplicity. It is useful to define a local particle
persistence, i.e. an overlap field, q̃(~x, t) as

q̃(~x, t) =

{
1 if d(~x, t) = 0
0 if d(~x, t) > 0

(7)

such that the average overlap q(t), i.e. q̃(~x, t) averaged
over sites occupied at t, gives the fraction of particles still
located at their original positions at time t.

In order to characterize the up-jump scenario of nu-
cleation and coarsening dynamics of the high-TS mobile
domains (see Fig. 2 of the main text) we resorted to a pro-
cedure allowing us to identify each domain and study the
time evolution of the average area. To do so we employed
the module scipy.ndimage.measurements.label of the
SciPy [3] Python library using a next-to-nearest neigh-
bors stencil and adapting the output to handle periodic
boundary conditions. Specifically, the complementary
overlap field is defined as q̃c(~x, t) = 1− q̃(~x, t) (see Eq.(2)
in the main text), so that q̃c(~x, t) = 1 signifies a mobile
site. A mobile domain consists of connected mobile sites,
where connections can be along nearest or next-nearest
neighboring lattice edges.

A simple, yet very informative, observable that can be
readily obtained from this analysis is the number of mo-
bile domains Nd. Its evolution for up- and down-jumps is
reported in Fig. 3(e) of the main text. The initial growth
of Nd in the up-jump case signals the nucleation of mobile
domains.

A further step can be made by looking at the dynamics
of the average area

〈Ai(t)〉 =
1

Nd(t)

Nd(t)∑
i=1

Ai(t) (8)

which is reported in the main text in Fig. 3(f).

V. OVERLAP AND VOID DYNAMICS

In the main text, we report the evolution of different
quantities, in Fig. 2 and 3, as a function of the average
overlap rather than as a function of time. This choice is
motivated by the fact that the differences in the dynam-
ics between down- and up-jump are most clearly visible
when measuring the evolution in terms of the fraction
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FIG. 1. Average overlap evolution, q(t), for up-jump with
Ti = 0.1 and down-jump with Ti = 0.3125, with a common
final temperature Tf = 0.25. These values are the same as
those used in Fig. 2 of the main text.

of particles that still retain the position ~x0 at the mo-
ment when the temperature jump is performed, i.e. the
average overlap q as discussed in the main text. Hence,
we report in Fig. 1 the evolution of the average overlap
as a function of time, where the much slower up-jump
relaxation is clearly visible.

Finally, we report here in Fig. 2 the positions of the
voids for three of the configurations shown in Fig. 2 of
the main text. We notice that for the down-jump dy-
namics all the voids belong to the mobile region already
at an early stage, while for the up-jump some voids stay
trapped in the immobile regions. The void and field dy-
namics can be examined also from the supplementary
videos supvideo up.mp4 and supvideo down.mp4.
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FIG. 2. Three of the four snapshots reported in Fig.1 of the main text with the void positions reported by black dots. The
initial temperatures are Ti = 0.3125 and Ti = 0.1 for the down- and up-jump respectively, with the final temperature Tf = 0.25.
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